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The paper studies statistical characteristics of the passive tracer concentrations 
and of its spatial gradient, in random incompressible velocity fields from the 
viewpoint of statistical topography. The statistics of interest include mean 
values, probability distributions, as well as various functionals characterizing 
topographic features of tracers. The functional approach is used. We consider 
the influence of the mean flow (the linear shear flow) and the molecular diffu- 
sion coefficient on the statistics of the tracer. Most of our analysis is carried out 
in the framework of the delta-correlated (in time) approximation and conditions 
for its applicability are established. But we also consider the diffusion 
approximation scheme for finite correlation radius. The latter is applied to a dif- 
fusing passive tracer that undergoes sedimentation in a random velocity field. 

KEY WORDS: Diffusion; mean field; correlation function; Furutsu-Novikov 
formula; Markov process; long-normal probability law; correlation splitting; 
delta-correlated approximation; diffusion approximation; random topography. 

1. I N T R O D U C T I O N  

The  s tudy  o f  pass ive  t r ace r  (o r  pass ive  sca la r )  t r a n s p o r t  in r a n d o m  ve loc i ty  

flows is a c lass ical  t op i c  in s ta t i s t ica l  f luid mechan ics .  I ts  app l i c a t i ons  

range  f r o m  q u e s t i o n s  o f  e n v i r o n m e n t a l  p o l l u t a n t  d i f fus ion in a t u r b u l e n t  

a t m o s p h e r e  to  p r o b l e m s  of  a d v e c t i o n  o f  h e a t  and  sa l in i ty  in ocean i c  
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currents/~-5~ and from diffusion in porous media ~61 to questions of the 
large-scale mass distribution in the late stages of the universe/7" 81 

The problem has been studied since the end of the 1950s, beginning 
with the pioneering work of Batchelor et al. 19' 1ol Many researchers (see, 
e.g., ref. 11-15) have obtained equations describing the statistical charac- 
teristics of the passive tracer field, both in Eulerian and in Lagrangian 
descriptions. This research activity continues vigorously at present. 

An initially smooth tracer concentration q(r, t) which undergoes diffu- 
sion in a random velocity field acquires in time a complex spatial structure. 
For example, individual realizations of 2D fields often resemble a complex 
mountain landscape with randomly distributed peaks, valleys, saddles, and 
ridges, all of which evolve in time. The mean values such as statistical 
moments (q(r, t)) and ( q ( r l ,  t)q(r2, t)), where (.,  .) denotes averaging 
over the ensemble of realizations of the random velocity field, smooth out 
fine details. Such averaging usually brings forth spatiotemporal scales of 
the whole tracer domain while neglecting its fine dynamics. The detailed 
structure of the tracer field can be described, as in standard topographic 
maps, t l6, 171 in terms of level curves of the concentration field (2D case) or 
level surfaces (3D case) 

q(r, t) = q const 

Alternatively, and often more conveniently, we shall employ the distribu- 
tional (indicator) function 

~,, r(q)= ~(q(r, t)--q) 

which has "values" concentrated on the level curve (surface). Figure 1 
shows schematically the numerical simulation of the time evolution of the 
level curve q(r, t )=const  of the 2D concentration field. 4 In view of the 
incompressibility of the fluid flow, the area bounded by the level curve is 
conserved, but the picture clearly becomes increasingly fragmented; we 
observe both the steepening of gradients and the contour dynamics at 
progressively smaller scales. With help of the distributional indicator func- 
tion one can study the dynamics of various functionals of level curves 
(surfaces). 

For example, integrating the norm of tracer gradient over the level set 

Ao(t) = f  dr Ip(r, t)l O(q(r, t ) - q ) = f  dl 

4 It was obtained by Dr. Yiming Hu while he was to replicating computer experiments of 
ref. 18. 
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Numerical simulation of time evolution of the level curve q(r, t ) =  const of the 2D 
concentration field in an incompressible flow. 

we get its arc-length in the 2D case and the level surface area in the 3D 
case.(19, 21) On the other hand, the integral 

S( t, q) = +�89 f dr rp(r, t) 6(q(r, t) - q )  

gives the area enclosed by the level contour and 

~M(q, t)~ ~: dr Irp(r,r t)____~] 6(q(r, t ) -  q), r = Irl 

estimates the number of connected level components as they evolve in time. 
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Note, that averaging indicator functions 

P,. ,(q)= (~(q(r, t)-q)  

Pt. ,(q, P)= (~(q(r, t ) - q )  c~(p(r, t ) - p ) )  

over velocity ensemble defines, respectively, the one-point probability den- 
sity of the random field q and the joint probability density of the tracer and 
its spatial gradient. In this fashion, even one-point statistical characteristics 
of the tracer permit us to determine statistical means of various functionals 
of the above types and make statements about the dynamics of individual 
tracer realizations in a random velocity field. This is particularly useful for 
problems of passive tracer diffusion in the atmosphere and the ocean, 
where, typically, one does not deal with ensembles, but rather individual 
realizations. The study of such problems constitutes the subject matter of 
statistical topography. 

This picture is well exemplified by the tracer dynamics and can be 
demonstrated by very simple statistical models of the velocity field. For 
example, it is relatively easy to write down equations for the statistics of a 
passive tracer in the so-called delta-correlated random velocity field (see, 
e.g., ref. 22), which can be seen as an approximation to other, more realistic 
situations. There, a Lagrangian particle behaves like an ordinary Brownian 
particle. 

The term statistical topography is widely used in the physical 
literature, ~6"2~ but in the mathematics community related problems have 
been extensively studied within the theory of random sulfaces or the 
geometry of random f ields.  ~17) However, the latter has emphasized static 
geometric properties of classical "probabilistically" defined random fields 
like Brownian sheets, spatially homogeneous fields, etc., whereas the main 
interest in the physics community has been on "dynamically" defined 
random fields, that is on random fields satisfying certain partial diferential 
equations. 

In this paper, we use a functional approach to study the problem of 
passive tracer diffusion in random velocity fields from the viewpoint of 
statistical topography. Both the general set up, and approximate methods 
permitting efficient numerical computations are considered. Applicability 
conditions for the latter are formulated. 

The papers is constructed as follows. Section 2 sets up the general 
problem and, in the absence of molecular diffusion, provides equations for 
the tracer distribution functions in Lagrangian and Eulerian descriptions. 
We also establish the relation between the two descriptions. These results, 
however, are valid only for a finite time interval. 
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Section 3 formulates the general functional approach which permits 
an efective analysis of Gaussian velocity field fluctuations, the so-called 
Furutsu-Novikov formalism). 

The subsequent analysis of the problem in the case of the delta- 
correlated (in time) velocity field is provided in Section 4. Here we study 
the mean tracer concentration field and its correlation function which 
characterize the global space-time scales from the viewpoint of statistical 
topography. We also investigate the role of molecular diffusion and its 
characteristics. If the molecular diffusion is absent we obtain Fokker-  
Planck equations for the joint one-point probability density of the tracer 
concentration field and its spatial gradient. In particular, we show that the 
gradient norm has a log-normal distribution and conclude that its 
moments grow exponentially in time. Based on the Fokker-Planck equa- 
tion we also calculate the time evolution of statistical characteristics of 
certain functions on level contours in the 2D case and level surfaces in the 
3D case. In particular, the mean contour length is determined and an 
upper estimate for the mean number of connected components of the 
contour is found. In some cases they grow exponentially in time. 

Furthermore, using the Fokker-Planck equation we study the 
influence of the drift on the tracer statistical characteristics. We show that 
the large drift gradient of the mean flow strengthens the role of weak 
velocity fluctuations in an exponential manner. The resulting Fokker-  
Planck equation is valid, however, only over the finite time interval. The 
interval size is estimated and is shown to depend on the molecular diffusion 
coefficient logarithmically. 

The delta-correlated case precludes many special features connected 
with the finite correlation radius. The latter could be approached via the 
diffusion approximation method. We find conditions for its applicability 
~md describe a number of subtle new effects. In particular, in Section 5 
we develop the diffusion approximation scheme for a sedimentation 
problem in a random velocity field. We show that taking into account 
the finite range of the temporal velocity correlations leads to anisotropy 
of the effective diffusion coefficients with respect to the sedimentation 
direction. 

All the approximations considered in this paper can be viewed as 
short-time correlation approximations. Physically, the assumption is that 
the velocity fluctuations have little effect on tracer statistics on time scales 
comparable to the temporal correlation radius. 

The paper presents a novel approach to the classical problem of dif- 
fusing passive tracer in random velocity fields based on ideas and concepts 
of statistical topography. Here we apply them to stochastic tracer dynamics 
and get some new spatiotemporal characteristics of its evolution. 
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2. EVOLUTION OF PASSIVE TRACER CONCENTRATION 

In this Section we formulate the dynamical problem in the Lagrangian 
and Eulerian descriptions, establish their connection, and prepare the 
ground for the statistical analysis of mean concentration and its correlation 
on the one hand, and the probability distribution of the tracer concentra- 
tion and its spatial gradient on the other. 

The basic equation that describes the evolution of the passive tracer 
density q(r, t) has the form 

9 2 (~+V(r,t)~---~)q(r,t)=K~r,q(r,t), q(r, 0) = qo(r) (1) 

where K denotes the "molecular" diffusion coefficient. Depending on the 
physical context, q could represent such quantities as temperature and 
salinity, of interest in oceanography, or, in the case of incompressible flows 
(div V = 0) below, it could also cover "matter" concentrations, such as air 
pollutants and oil droplets in an oil slick. 

For incompressible flows, Eq. (1) has the form of a conservation law, 
the quantity 

Q= f dr q(r, t)= f dr qo(r) 

being conserved. 
We assume velocity field V to be random with finite expectations and 

decompose it into the mean component 

v(r, t) = (V(r, t ) )  

and the random fluctuation 

F(r, t ) =  V(r, t ) - v ( r ,  t) 

Although Eq. (1) is linear, the equations for powers q"(r, t) of interest 
to us are nonlinear: 

~-~+V(r, t)"-~r q"(r, t) 

0 2 
= K ~ q"(r. t) + Kn(n - 1 ) q"-  2(r, t) p2(r, t) + nq"- ~(r, t) Aq (1') 

They involve the spatial gradient p(r, t ) =  0q(r, t)/Or of the tracer field. 
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Equation (1) gives the Euler&n description of the system. 
A direct study of the probability distribution of q(r, t) is not possible 

if(1 ) contains the second-order (diffusion) term in r. One point of interest 
is the limiting behavior of solutions as ic--, O. Here, we require the initial 
tracer concentration qo(r) and its gradient po(r) to be large scale (the 
precise meaning will be explained later). Then, one can drop terms con- 
taining h- in (1), and consider the transport problem described by 

(~t  + V(r, t ) -~r  ) q(r, t )=0 ,  q(r, 0) = q0(r) (2) 

The dynamic equation (2) is physically relevant only over a limited time 
interval. 

For a more complete statistical analysis in this time interval it is 
necessary to include the gradient field p(r, t ) =  aq(r, t)/ar, which obeys 

~ +  v(r, t) p,(r, t ) -  Or~. pk(r, t) 

p(r, 0) = p0(r) = ~rr q0(r) 

(3) 

',ts a consequence of (2). Here the repeated indices designate, as usual, 
summation over them. 

Let us introduce a distributional (indicator) function 

�9 ,, ,(q, p ) =  6(q(r, t ) - q )  6(p(r, t ) - p )  (4) 

which determines the joint one-point probability distribution of fields q and 
p at a given spatial point in the Eulerian coordinates. We shall also 
consider more general two-point distribution of the tracer concentration 
field and its gradient 

~,. r,. ,,_(ql, Pl; q'-, Pz) 

= 6(q(rl, t)--ql)6(p(rl,  t ) - -pt)6(q(r2,  t)--q2)6(p(r2, t )--  p2) 

~,, rt(ql, Pl) ~,. r,(q2, Pz) (4') 

The additional information contained in (4'), would allow us to analyze 
various functionals of fields q and p. 
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Based on Eqs. (2) and (3), one can easily obtain the dynamic evolu- 
tion of functions (4) and (4'). In particular, q~,, ,(q, p) satisfies the Liouville 
equation 122 

(o ~r) Ova(,', t) O 
-k- V(r, t)- ~t, ,(q, P) - &'---~. Op~ (pk~,, ,(q, p)) (5) 

with the initial condition 

~o, ,(q, P) = 6(qo(r) -- q) cS(po(r) -- P) 

The first-order partial differential equations (2) and (3) can be solved by 
the method of characteristics 

dr(t[~) 
= V(r, t), r(OlO = ~ (6) dt 

Then, (2) and (3) are reduced to the initial value problem for ODE's 

d 
~ q ( t l O = O ,  q(Olg) = qo(O 

d OVk(r, t) qo({) 
dtP~(tlO = OrmPk(tl{), pi(0] ~) = O~ i 

(6') 

along the characteristic curves. Equations (6) and (6') give a closed form 
Lagrangian description of the system. Here and elsewhere (... 1{) indicates 
conditioning by the initial marker { in the Lagrangian formulation. Solu- 
tion q remains constant along characteristics, so 

q( t [O - qo(~) 

Introducing a distributional (indicator) function 

�9 ,(r,q, pl~)=3(r(t[~)-r)3(q(t]~)-q)O(p(t]~)-p) (7) 

which determines the joint density of particle distribution, we can write a 
similar Liouville equation 

(o o)  k,r ,,; 
~ + V ( r , t ) . ~  ~,(r ,q,  p l O =  0 0 r i  (pk~',(r,q, plO) (7') 

with the initial condition 

(Oqo(~) ) 
#o(r,q, Pl%)=O(%-r)O(qo(%)--q)O \ -~ P (7") 
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The problems (5) and (7') describe essentially the same quantity viewed 
from two different perspectives: the Lagrangian and the Eulerian. c22) 
Indeed, taking into account the incompressibility of the flow, we can write 
the function (7) as 

�9 ,(r, q, P I~) = 0(~(r, t ) -  ~) ~,, r(q, p) 

where function ~(r, t) inverts r = r(t ] ~), i.e., restores the Lagrangian marker 
from (r, t). Subsequent integration over the marker ~ yields the essential 

relation between the Eulerian and Lagrangian densities: 

q~,. r(q, P) = f d~ ~,(r, q, P I~) (8) 

Since parameter { enters into (7') only through the initial condition (7"), 
clearly, the equations for the Eulerian and the Lagrangian densities should 
coincide. 

Let us also observe that the variable q in Eqs. (5) and (7') enters only 
through the initial conditions. For that reason, multiplying those by q" and 
integrating over q and p we get a dynamic evolution equation for moments 
q" that coincides with (5) and (7'). The latter property is connected with 
the conservation of q along characteristics, and q(r, t )=  qo({(r, t)). 

To recapitulate, the quantities of interest to us, the Eulerian q"(r, t) 
~nd q~,, r(q, P), obey the same dynamic equations as the corresponding 
Lagrangian probability densities q~,(r 1~) and ~b,(r, q, PlY)- 

In a similar manner we can consider a system of two particles 

drl(t) 
dt =V(r l ,  t), r l (0)=~l  

@ti(t) OVk(r ~ , t) Oqo(gl) 
dt - Orti plk(t) ,  p] i (O)= ~-~li 

drz(t)  
dt - V(r 2, t), r2(0) =g2 

(9) 

_ O q o ( { , _ )  d/)2,(t) 0 Vk(r,_, t) p,_k(t), p2,(0) = - -  
dt Or zi 0~ 2i 

The corresponding two-point Lagrangian density will then be described by 
the same equation as the two-point Eulerian density (4'). All (Eulerian and 
Lagrangian) densities above obey stochastic partial differential equations 

s22/84/3-4-31 
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with the randomness introduced through the velocity fluctuations F. Their 
ensemble averaging yields the evolution of the probability densities 

P,.,(q,P)=(@.r(q,P))F, P,(r,q, pl~)=(~,(r ,q,p[~))  F (10) 

in both the Eulerian, and the Lagrangian descriptions. 

3. STATISTICAL AVERAGING 

Here we shall implement the averaging procedure of Section 2 in a 
number of cases. For instance, averaging Eqs. (1) over the F-ensemble 
yields an evolution of the mean field, where random velocities F are 
coupled to random solution q = q [F] ,  itself a functional of F, through the 
fluctuation term 

( F - o ~ q )  (11) 

Here ( . , . )  means averaging over the space-time ensemble. So, to get the 
effective mean field evolution one needs to decouple the cross-correlation 
term (11). The decoupling methods strongly depend on the nature of the 
random field F. 

In the Gaussian case decoupling exploits the so-called Furutsu-Novikov 
formula/23'24> Namely, given a zero-mean Gaussian random vector field 
F = (Fi), any functional R [ F ]  satisfies 

/ aR Vl \ 
( f i (r , t )  R [ F ] ) = f d r '  dt'(Fi(r,t)Fj(r',t ')) \3Fj(r' , t ')/  (12) 

So, the cross-term decouples into a superposition of products of the 
correlation coefficients and the mean variational derivatives of R. Applying 
the Furutsu-Novikov formula (12) to the cross-term ( 11 ) of Eq. ( 1 ), we get 

+ v(r, t) . ~ )  ( q(r, t) ) 

0 / 3 q ( r , t ) \  
+f a ,f ar' r', \<(r' , , ' ) /  

0 2 
=x-~r2 (q(r,t)) (13) 

where Bi/(r, t; r', t') = <F,.(r, t) Fj(r', t')> is the space-time correlation of F. 
Although Eq. (13) is exact for any zero-mean Gaussian field F, it is not 
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closed, since the evolution of the mean field is coupled to the mean varia- 
tional derivative with respect to F. The variational derivative 6q/~F itself 
solves a stochastic differential equation 

0 (5q(r , t )  ~ 0 (6q(r , t )  
0t \5Fj(r ' ,  t')J + [v(r, t) + V(r, t)] 'Or \6Fj(r',  t ')J 

0 2 ( 6q(r, t) 
= K ~-r-'-r2 \dFs(r', t')J (14) 

obtained by varying (1) in F, and satisfies the initial condition 

~q(r______2 t) [ = --6(r--r')Oq(r, t') 
6rj(r', t')l,-,,+0 o,-j 

so 6q/6F could be viewed as stochastic analog of the Green's function for 
problems of type (1). Taking the ensemble average of (14) and then applying 
the Furutsu-Novikov formula would produce higher order variational 
derivatives (O2q/6FigFj) coupled together. Solution of such system of 
moment equations would require a suitable closure hypothesis that could 
be rigorously implemented only in certain cases. Two of these cases, 
namely the delta-correlated in time random fields F(r, t) and the diffusion 
approximation for q, will be discussed below. 

4. D E L T A - C O R R E L A T E D  R A N D O M  FIELD A P P R O X I M A T I O N  

This section discusses the case when the velocity field is delta- 
correlated in time. This assumption permits a great simplification of the 
general situation discussed above. 

4.1. M e a n  Tracer  C o n c e n t r a t i o n  and Its Cor re la t ion  Funct ion  

In the delta-correlated approximation the random fluctuation field 
F(r, t) is assumed to be zero-mean, Gaussian, with covariance structure 

B~j(r,t;r ' , t ')=(Fi(r,t)Fj(r' , t '))=2B~F(r;r' , t)~(t-t ')  (15) 

where 

Bu~rr(r, r', t) = dt' Bu(r, t; r', t') 
- - o 0  
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In this case, the integral term in (13) could be expressed through 
Oq(r; t)MFj(r'; t') at t=t ' ,  i.e., through the initial condition of (14). As a 
result we get a closed-form differential equation for the mean 

( o) o[ o 
f f t + v ( r , t ) ~  r ( q ( r , t ) ) = ~ r  / B ~ ( r ; r , t ) - - + x  ( q ( r , t ) )  Orj 

So, the spatial variance Ben(r; r, t) of F becomes the effective diffusion coef- 
ficient for the mean concentration. 

If the velocity fluctuation field F(r, t) is homogeneous and isotropic in 
space and stationary in time, then the effective correlation coefficients 
depend just on Ir-r ' l ,  i.e., 

B,~rr(r; r', t ) =  B,~fr(Jr- r'l) 

B;.fr(r-- r') = �89 d t ' B o ( r - r ' , t - - t '  ) 
- - O 3  

and their value at O is a scalar matrix with coefficient D,:  

B~ff(0) = 6 i j D  1 , D ,  = 1 B f ( 0 )  (15') 

Here N ( = 2 or 3) denotes the dimension of space. Hence, we get 

( 0  0 )  ~ 
~ + v ( r ,  t )~r  r (q(r ,  t ) )  = ( D ,  + x )  0r---5_ (q(r ,  t ) )  (16) 

In the particular case of zero mean flow v(r, t ) = 0  and the initial 
tracer concentration qo(r) itself a homogeneous random field, the random 
solution q(r, t) will also be homogeneous and isotropic. Hence, 

(q(r,  t ) )  = qo 

Similarly, in this case, for the correlation function one obtains equation 

F(r , t )=(q ( r l , t ) q ( r2 ,  t ) )v ,  r = r l - - r 2  

one obtains the equation 

0 0 2 0 2 
~ F ( r ,  t ) =  2x ~_r2 F(r, t )+2 - -D~  Orj F(r, t) (17) 

where 

eft eft Do(r) = B o. (0) - B 0 (r) 

is the matrix-valued structure function of field F. 

(17') 
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Let us remark that Eqs. (16) and (17) have the Fokker-Planck form for 
the one-particle and two-particle probability densities of the Langrangian 
coordinates. Furthermore, the Lagrangian relation (8) yields a Markov 
process. Additionally, Eq. (17) describes the relative diffusion of two 
particles. For sufficiently small initial distances between two particles 
(ro ~ 1o, where 1o is the spatial radius of correlation of the fluctuation field 
F) the function D;j(r) can be expanded in a Taylor series and in the first 
approximation 

1 02B,~(r) I 
-- rkrl (18) Du(r) 20rkOr l  ,=o 

Now let us introduce the spectral density of the energy of the flow by 
the formula 

Then 

where 

n~.ff(r) = f dR E(k) (r -kikj~ e ikr --~-j (19) 

OrkOrl , = D2{(N+ 1)Jo.Jkt--Jik6jt--&Ju} (20) 
= 0  

1 
DE = N(N+ 2) I dk k2E(k) (21) 

Note that the quantity D~ introduced earlier is also determined by the 
spectral density E(k) via the equality 

D~ = - ~ -  ~ dk E(k) (21') 

In this case the diffusion tensor (18) simplifies and can be written in the 
form 

Do(r) = �89 l) rZ60- 2r,rj} (22) 

Substituting (22) into (16), multiplying both sides of the obtained equation 
by r 2, and integrating over r, we obtain the equation 

d 
(rE(t) > = 4xN + 2(N + 2 ) ( N -  1 ) D2(r2(t) > (23) 
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for variance ( r  2) [the mean ( r ( t ) )  is conserved]. Its solution has the 
structure 

2xN 
( r  2) = r o e 2 ( U + z " u - l ) D " +  {e z ' u + 2 ' ' u - ' ' ~  1} (24) 

( N +  2 ) ( N -  1) Dz 

It is clear from (24) that under the condition 

K ~ D 2 r  o (25) 

the effects of molecular diffusion on a particle are not significant and the 
last term in (24) can be omitted. In this case the solution becomes an 
exponentially growing function in time 

( r 2 )  9 2 ( N + 9 ) ( N _ I j D ,  t = r o e  - - (24') 

Expression (24') is valid whenever expansion (18) is, that is for the time 
range 

1 In lo (26) 
D 2 t ~ ( N + 2 ) ( N -  1) ro 

Note that the influence of the molecular diffusion for the above one-particle 
probability density, according to (16), can be neglected if the condition 

K ~ D l (25') 

is satisfied. Approximation (18) is, however, not valid for turbulent fluid 
flow, (~ for which the structure function cannot be expanded into a Taylor 
series. 

As mentioned in the introduction, the mean value (q(r, t ) )  and the 
correlation function F(r, t) characterize the spatiotemporal scales of the 
global passive tracer domain in the sense of statistical topography. At 
the same time they hide the detailed dynamics inside this domain. Clearly, 
the molecular diffusion coefficient has little influence on these scales and 
conditions (25) and (25') are not very restrictive in the physical sense. 

So far, we have considered the mean concentration of the tracer and 
its correlation function which are described in closed form due to the 
linearity of the basic equation (1). If one considers higher moments of the 
tracer concentration described by Eq. (1') then one does not get a closed- 
form description. Indeed, averaging (1') over the F-ensemble gives 

(0 0) 
~ +  v(r, t) ~r r (q"(r, t ))  

02 
= (D l + x) Or-- 5 (q"(r, t))  --xn(n--  1)(q"-2(r,  t) pZ(r, t ) )  (27) 
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whose right-hand side contains an unknown covariance of the concentra- 
tion field and its spatial gradient. In order to understand better the struc- 
ture of the tracer gradient field one can, in the first approximation, neglect 
effects of the molecular diffusion, i.e., consider the stochastic system 
(2)-(3). That will be done in the next section. 

4.2. Fine S t ruc ture  of Passive Tracer  Fluctuat ions in 
Random Veloc i ty  Fields 

In this subsection we look at subtler characteristics of tracer fluctua- 
tions than the means and correlations considered in Subsection 4.1, like the 
joint probability density of the tracer concentration and its gradient. To 
this end we average the Liouville equation (5) over the ensemble of realiza- 
tions of fluctuation field F and use a version of the Furutsu-Novikov 
formula 

{ 0 +06(r-r') 0 t 
6uj(r,,t_O) O,,,(q,p)= -6(r-r ')~r-~r j ~ ~p.pj O,.,(q, p) (5') 

for the variational derivative obtained from (5). As the result we get for the 
one-point joint probability density of fields q(r, t) and p(r, t) the Fokker- 
Planck equation 

t 0 0 Opv(r,t) 0 } 
~ + v(r, t) Or 0r 0p P'' '(q' p) 

=DIar--~_P,,r(q,p)+Dz (N+l)~-~p2p2+2~ppP - 2  ~pp Pt, r(q,P) 

(28) 

with initial condition 

Po,,(q,P)=6(qo(r)-q)cT(Oqo(r)-P) (28') 

Constants Dx and D 2 introduced in (21) and (21') become the new diffu- 
sion coefficients for the Fokker-Planck equation in the r and p spaces, 
respectively. 

Equation (28) can be written in an operator form 

0 
Ot Pt, r(q, P) = s t) P,, ,(q, p) + ~( r ,  p, t) P,, ,(q, p) (29) 
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where operators/2 and h2/are defined by 

O 02 
s t )=  -v(r ,  t) ~r + D, ~r 2 

~l(r,p,t)=Opv(r't)~ { O---~ +D2 (N+ 

(29') 

1)~-p2P-- OpP - 2  ~ppP 

As was discussed earlier, operator s t) defines the spatial diffusion 
of the Lagrangian particle, while )Q(r, p, t) defines the diffusion of the 
tracer gradient and the correlation of gradient with the position vector. In 
the simplest case of zero mean flow (v = 0), or in the case of shear flow with 
constant gradient, operators/s and ~ commute, which reflects the statis- 
tical independence of diffusions in the position r space and gradient p 
space. 

Also notice that in this case for spatially homogeneous and isotropic 
Gaussian velocity fluctuations, the corresponding diffusion operators are 
also isotropic. This fact will give us additional information on the fluctua- 
tions of the tracer gradient that we shall now outline. 

Consider the case of the zero mean flow (v = 0). Then the solution of 
Eq. (29) is obtained by averaging Eq. (8), 

P,.,(q, p ) = ~ d ~ P , ( r l ~ )  P,(q, PI~) (30) 

Here P,(rl~) denotes the probability density of the particle Lagrangian 
coordinate given by 

0 2 
OtO P'(r I ~')=D~ ~rZ P,(r I ~,), Po(r I ~)= di(r- ~,) (31) 

and P,(q, p[~) is the joint probability density of q and Vq, which satisfies 

otP,(q, PI~)=D2 (N+l )~p2p2-2~ppP - 2  ~ppP P,(q' 

Po(q, P I~) = 6q0(~) -- q) 6(P0(~) -- P) 

pl~) 
(32) 

Specifically, in the 2D case the solution of Eq. (31) is 

P , ( r l~)=exp Dlt-~r 2 6( r - -~)=(4r tDi t ) - l exp  4Dlt J 
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It corresponds to the Brownian particle with parameters 

From (32) we derive the following moment equation for gradient 
p(tl~):  

0 
0t < IP(t I ~)1"> = l)2n(g+ n ) ( g -  1)( Ip(/(~)l~> 

0 (33) 
0t ( p Ip(t I ~)1") = D,_n(N + n + 2 ) ( N -  1)(p Ipl n) 

and, in particular, 

0 
Ot (p( t l~))  =0, i.e., (p( t l~))  = Po(~) 

So the moment functions grow exponentially in time, with the excep- 
tion of the conserved quantity (p(t I{)). Also, for an arbitrary vector a, the 
quantity ( lap(t l{)l)  is conserved, i.e., 

< lap(t I ~,)1 > = lapo(~)l (33') 

Notice that in the Eulerian representation, (30) implies that the 
exponential time growth of moments (Ip(r, t)l") and (p(r, t)lp(r, t)l") is 
accompanied by their spatial dissipation with the diffusion rate D~. 

Equation (33) also implies that the normalized quantity Ip(t l~)l /  
[Po(~)l has a log-normal probability distribution, i.e., 

Z(t) = l n - -  

is Gaussian with parameters 

(X( t) ) = D2N(N-  1) t, 

Ip(tl~)l  
IPo(~)l 

cr~(t)=2D2(N- l ) t  (34) 

Properties of the log-normal distribution were studied iri detail in ref. 25, 
where it was "shown that the typical realization of process Ip(t)l has an 
exponential growth 

Ip(t I ~)1 ~ IPo(~,)l e x p [ D 2 N ( N  - 1) t] 

accompanied by large excursions relative to the above exponential curve. 
In addition, there exist several lower probabilistic estimates for the 
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quantity X(t). Note that this situation is fundamentally different from the 
one-dimensional problem (where the fluid flow is always compressible). 
There, the gradient conserves its sign and a typical realization of the 
gradient process is an exponentially decaying curve. 122"261 It is worth 
mentioning that the log-normal distribution of the norm of the tracer 
gradient, first proposed in ref. 27, agrees well with experimental 
atmospheric data. 1"-8"29~ This law was initially discovered theoretically in 
ref. 30, although without the equations obtained above. 

We also get from (32) the evolution equation 

0 
& (p;( t  I~) pj(tl~)) 

= -4O2(pi( t l~)pj( t l~))  + 202(N+ I)~u(p2(t) I ~) (35) 

for the covariance (p~(tl~)pj(tl~)). Clearly, cross-terms i # j  of the 
correlation of different components of gradient p(tl~) converge rapidly 
(exponentially) to zero. So, for large time values D2t >> 1/4 the vector 
P(tl~) undergoes full statistical isotropization independent of the initial 
conditions. 

Here we have limited our attention to moments of the tracer gradient 
(33), (33'). Saichev and Woyczynski 1261 concentrate on a geometric inter- 
pretation of these quantities and we will analyze them from that (statistical 
topographic) perspective below. 

4.3. Geometric Interpretation of the Fine Structure 
(Statistical Topography) 

In the previous sections we have obtained a series of general equations 
which in principle permit us to obtain information about the time evolu- 
tion of one-point, two-point, etc., probability densities. The complete set of 
these equation, obviously, will give also the exhaustive description of the 
behavior of separate realizations of solutions of the initial stochastic equa- 
tions. However, in practice, even the one-point probability densities for 
solutions of the stochastic equations can be calculated only in a few special 
cases. So in our case of mean flow it becomes impossible. Even in cases 
when this could be done and various statistical characteristics of solutions 
could be computed they would behave differently than individual realiza- 
tions of the original stochastic system. 

In this context an important question has to be addressed: how can we 
obtain information on geometric properties of individual realizations of 
random fields from partial information of their statistical characteristics? 
This question is especially pertinent for real physical systems like oceans 
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and the atmosphere, where, generally speaking, one deals with concrete 
realizations rather than ensembles. The study of these problems is the sub- 
ject matter of the statistical topography of random fields (see, e.g., refs. 16 
and 17). 

The structure of the spatial random field q(r, t) of the passive tracer is 
highly chaotic, its individual realizations constantly change their shape, 
and are characterized by "sharp peaks", saddles, ridges, etc. Averaging 
clearly smoothes out all special features of individual realizations. The level 
curves of such a "rough system" driven by stochastic flows also obey a 
stochastic time evolution determined by the equation q(r, t ) =  q. The mean 
values of distributional indicator functions ~b,, , (q)=~(q(r ,  t ) - q )  of these 
level curves define the corresponding probability density. The function 
r r(q) determines a surface S of constant values of, for example, concen- 
tration, temperature, etc., in the 3D space, and an analogous contour l in 
the 2D space. 

In this subsection, as in ref. 26, we will restrict our attention to the 
case of two-dimensional fluid flows. 

4.3.1. Level Curve Length Statistics. Consider the following 
auxiliary integral related to the function r ,(q): 

A,,(t) = I dr Ip(r, t)l"+ I ci[q(r, t ) - q 3  =~  Ip(r, t)l"dl (36) 

where p(r, t ) =  aq(r, t)/ar is the spatial gradient of the random field q(r, t). 
These integrals are moments of density gradients integrated over contours. 

In particular, for n = 0, formula (36) gives the length of the contour 

Ao(t) = l(t)= I dr Ip(r, t)l 6[q(r, t ) -  q] =~  dl (36') 

The mean tracer concentration gradient over the planar level sets is given 
by the contour integral 

t "  f .  

A(t) = Js Vq(r, t) dS = q J dr  p(r, t) O[q(r, t) - q] 

=qc~ p(r,t)  dl 
J Ip(r, t)l 

(36") 
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Equation (36)-(36") can be rewritten in terms of the distribution function 
#,, ,(q, P) as follows: 

An(t)= f dr I dpp"+I~"'(q'P) 

A(t)=q f dr ~ dp p~bt. ~(q, p) 

(37) 

Consequently, their averages are determined by the one-point probability 
density P,, r(q, p) via 

(An(t)) = I dr f dp pn+ ,p,. r(q, P) 

(A( t ) )  =q f dr f clp PP,.r(q, P) 

(37') 

Substituting (30) for P,. r(q, P) and taking into account that I dr P,(r I {) = 1, 
we express the quantities of interest 

(An(t)) = ~ d~ f dp p n+ 1pt(q, pl~) 

(A(t)) = q I d~ I dp pP,(q, P I~) 

(37") 

in terms of Lagrangian probability density. In the 2D case, those satisfy 
Eq. (32), 

O 2 3 2 
3 ~  2 (~ Pt(q, P[~)=D2 { c3p2p - - 2 ~ p p - - 2 ( ~ p p )  } P,(q, p]~) 

Po(q, p l Y )  = ~ ( q o ( ~ )  - q) ~(po(~) - p)  

Oqo(~) 
P o ( ~ ) - -  

Differentiating expression (37") with respect to time and applying equality 
(32) with N--2,  we obtain differential equations for the mean values 

d 
dt (An(t)) = (n + 1)(n + 3) D2(An(t)), (A.(0) )  =An(0 ) 

d 
(A(t)> =0,  <A(0)> =A(0) 
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Their solutions give functions exponentially growing in time 

( I t ) )  =10 e3D-'', (A, ( t ) )  =A,(O)e ~l+'~l'+s~~ (38) 

whereas the mean concentration gradient, averaged over the area, is con- 
served, i.e. ( A ( t ) )  = A(0). 

The exponential growth of (38) indicates strong roughening of the 
tracer level curves with time, which leads to "fractal-like" structures. The 
situation is similar for the tracer density and its gradient. Examples of 
numerical modeling of this phenomenon are shown in Fig. 1 (for more 
details see ref. 18). 

4.3.2. Area Statistics for Level Curves. Let us note the 
following expression for the area bounded by the level curve of the field 
q(r, t): 

S(t, q ) =  ---�89 dr ( rp)~ , . , (q )  (39) 

where the choice of the _+ sign is determined by the value of S(t, q) at 
t = 0 ,  or by the type of monotonicity of q [in the case q(r, t) varies 
monotonically]. Thus, if the field q(r, t) is radial, i.e., q(r, t) = q(r, t), then 

rO 
p(r, t)=--g-q(r, t) 

/ ' O F  

and the sign depends on the sign of the derivative Oq(r, O/Or. One can 
integrate (39) by parts to get the relation 

0 S(t ,q)= +__Idr~, ,(q) +A_~(t,q) 
Oq " 

(40) 

It is obvious that in the more general case 

Fs(t; q)=fsF(t ,  r; q(r, t)) dr 

integrated over the level set S bounded by the curve q(r, t ) =  q we have 

0 
oqX-- Fs( t, q) = +-- J dr F(t, r; q) q>,. ,(q) (40') 
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In particular 

6 ~,.q~ drF(q,(r,t))= +F(q)-~qS(t,q) (40") 

and, consequently, the integral ~sr dr F(q(r, t)) is independent of time, 
because S(t, q)= S(O, q) in view of the incompressibility of the flow. 

4.3.3. Mean Number of Level Contours. Here we consider the 
time evolution of the level contours 

q(r, t) = q = const (41) 

Figure 2 provides a schematic illustration of how the initial connected con- 
stant concentration level contour evolves in time into several connected 
components. 

The dynamics of q increases the complexity of level curves and leads 
to their fragmentation into disconnected contours. This process is partly 
described by statistics of the contour number Jlr(t, q), which admits the 
following geometric estimate expressed in terms of q and Vq: 

Oq(r, t) 
J/'(t,q)<~o dr ~ O(q(r,t)-q) (42) 

The estimate is written in polar coordinates (r, ~b). We look at each direc- 
tion ~b and count the number of intersections along the ray (r, ~b) with the 
level set (41). The right-hand side of (43) assigns to each level curve the 

t=O t > 0 
N=I N=5 

Fig. 2. Schematic evolution of a simple initial profile (~,1"= l) at t = 0  into a more com- 
plicated topographic pattern (.,I, '= 5) at a later time. 
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B 

%__ 
Fig. 3. Calculation of the estimate for the number of disconnected contours of a level curve. 

The number of intersections for contours A, B, and C is, respectively, 1, 2, and 6. 

maximal number to its radial branches (see Fig. 3), and hence provides an 
obvious estimate of ~/ .  

One could write an exact expression for m r in terms of curvature x, 
namely, 

Jff(t, q) = (1/27r) I dr K(r, t) IVq(r ,  t)l d(q(r, t) - q )  

However, K involves a complicated expression in terms of first and second 
derivatives of q, that are too difficult to analyze statistically. 

Taking into account the fact that 

~rq(r, r t) = r Vq(r ,  t) (43) 
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one can rewrite formula (42) in the form 

Jff(t, q)<~ f? dr f dp 17 -~1 cb,. ,(q. p) (44) 

If we average now inequality (44) over the ensemble of realizations, in view 
of (30)-(32) we obtain the following estimate for the average number of 
disconnected components of the level curve: 

Irpl ( Y(t, q) ) <~ fo dr f dp f d~ ~-- P,(r[~) P,(pl~) J(qo(~)-q) (45) 

Since the quantity ( [ rp( t [~) [ )  is conserved during time evolution [see, 
e.g., (33')], the integration over p in (45) can be carried out to give 

(./V(t, q)) <<.~o~ d,.fd  I rP~ P'(r I ~ ) r  J(qo({)--q) (46) 

Now let us assume that the initial distribution of the passive tracer is 
radial, i.e., qo({) -  qo({). Then, 

Oqo(~) 
Po(~) . . . .  

and the inequality (46), taking into account (31'), can be rewritten in the 
form 

(~U(r)) <~(41nr) fo/2d(b f /  dr 

x cos ~be -il  + ,~/~ cosh(2r cos ~b/r) (47) 

where the dimensionless time r=4Dlt/ro(q) has been introduced and 
where ro(q) is the radius of the initial level concentration curve. It follows 
from (47) that for r >> 1 one has the asymptotic 

2 
(JV'(r))  =V/- ~ (48) 

i.e., the mean number of connected components of the concentration level 
curve decreases in time according to a power law. Figure 4 shows the 
dependence of the estimate of (JV(Z)) on the dimensionless time r as well 
as the asymptotic expression (48). This dependence is totally determined by 
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Fig. 4. 

<N( t )>  
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\ 

Estimate of the mean number .,if(t, q) of connected component contours of level 
curves and its asymptotics (dashed line). 

the diffusion coefficient D I and is independent of the fine structure of fluc- 
tuations of the tracer concentration gradient. Let us remark that the exact 
mean contour number (N(t ,  q) )  would depend on the diffusion coefficient 
D2 that describes the fine structure of the tracer field. 

In this subsection, we have provided a detailed statistical analysis of 
tracer concentration in random velocity fields and, in the absence of a 
mean flow, the analysis of the tracer gradient. The presence of a mean flow 
(even a deterministic one) leads to steepening of the tracer gradient and the 
deformation of its level sets. The presence of even small fluctuations of the 
velocity field quickly accelerates these processes. We will illustrate this by 
the example of the simplest two-dimensional linear shear flow. 

4.4. Linear Shear Flow 

In this subsection we consider a linear shear mean flow 

V x = ocy,  Vy  = 0 

and analyze the effect of the shear on the statistics of the tracer concentra- 
tion. 

The probability distribution P,, ,(q, p) is described by Eq. (28) for 
N =  2, which now takes the form 

822/84/3-4-32 
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Ot P'" r(q, P) 

= -~y~+D, ~ P,.,(q, pl 

+ ~pl0-~,_+D2 3~r - -2~1 , - -2  Np ~,.,(q, Pl (491 

where, we recall that (Pl, P2)=(Px, Py). As before, the effective spatial 
diffusion of particles will be described by the operator 

/_](r) = ~y ~ + DI 02 
. ( ~ i  "2 

The corresponding probability distribution is Gaussian with parameters ~3t~ 

(x ( t ) )  =Xo+Og~ot, (y( t ) )  =Yo 

a-.,..,.(t)=2Dlt(l +~o~-t-), cr~.y=2Dzt, a-,.y=o~Dtt 2 

The operator 

0 2 p2_20 

describes the diffusion of the tracer concentration gradient and is now 
anisotropic. In this case the mean value of the vector p is not conserved; 
it gives a linear function of t, 

( p l ( / ) )  = pl(0), (p2( / ) )  = p2(0)--~Xpl(0 ) t 

in the case of zero velocity fluctuations. 
We consider second moments of the vector p and write the Lagrangian 

equations for them: 

d 
dt (p2)  = 8D2(p2) _ 2~x( p, P2) 

d 
(P l  P2) = - -4D2(pI  P2) -- ~ (P~)  (50) 

d 
dt (pZ) = - 4 D z ( p ~ )  + 6D2(p 2) 
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The linear ordinary differential system (50) has characteristic exponents 2 
that obey 

(2 + 4D2) 2 (2 - 8D2) = 12~'-D2 (51) 

The roots of the characteristic equation (51), depend, essentially, on o~/D2. 
For small o~/D2 ,~ 1, these roots are, approximately, 

1 (x 2 

2~ = 8D2 + 12 D--~_,' ).2 = -4D2  + i I~1, 23 = --4D2 -- i I~1 (52) 

Hence, in the time range D2t ,> 1/4, the solution of the problem is com- 
pletely controlled by random factors. This means that random velocity 
fluctuations become quickly dominant in problems with weak mean-field 
gradients. 

In the case of large o~/D2 ~ 1, the characteristic equation (51) has 
approximate roots 

21 = (12c~2D,_) 1/3, 22 = (120r t/3 e il2/31 n, 23 = ( 120c-,D2 ) 1/3 e-it2~3)n 

(53) 

Since the real parts of 2 2 and 2 3 a r e  negative, for (12e-'D_,) I/3 t>> 1, solu- 
tions are asymptotic to 

(p2(t))  ~ exp{(12ct2D2) 1/3 t} (54) 

so even small velocity fluctuations have significant effect on the second 
moment in sufficiently strong mean gradient flows. 

4.5. Effects of Molecular Diffusion 

We shall start with an observation made earlier: as time passes, the 
tracer concentration field acquires a more chaotic structure and its spatial 
gradient steepens. ~ In addition, fine-scale structures are created. This 
tendency would be checked at the level of molecular diffusion, so the 
dynamical picttlre would be valid only for a limited time interval. Our goal 
is to estimate the length of this time interval. To that end we shall utilize 
the exact equation (27) in the absence of mean flow: 

a 02 
at (q 'r '  t))  = (DL + ~c) 0r-- 5 (q"(r, t ) )  - -Kn(n -  1)(q"-2(r,  t)p'-(r, t ) )  (55) 
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For small x ~ D~, the solution of (55) can be written in the form 

( q"(r, t) ) =exp ( tD, ff-~2) q'd(r) 

-xn(n-1) f~ dr exp [ ( t -r)  D~ ~ ]  

x (q"-2(r ,  r) p2(r, r ) )  (56) 

To evaluate the last term in (56), we exploit Eq. (29) with zero mean flow. 
Then we get 

0 3 2 , 
Ot (q"-2(r '  t} pZ(r, t ) )  = D  1 ~ (q"-Z(r,  t) p-(r, t ) )  

+2D2(N+2)(N-1)(Q"-2(r, t)p2(r, t ))  

for (q"-2(r ,  t) p2(r, t)) .  Its solution is 

(q"-2(r ,  t) p2(r, t ) )  [ 02] 
=exp  2DdN+2)(N--1)t+D~t~ G-'-(r)pg(r) (57) 

Substituting (57) into (56) and carrying out integration with respect to r, 
we get 

(q"(r, t ))  =exp  tDl q ; ( r ) - K  2D2(N+2)(N- 1) 

x {exp[2D2(N+2)(N- 1) t] - 1} qg-2(r) po(r)} (58) 

Formula (58) shows that the molecular diffusion becomes insignificant 
under two conditions. One of them limits the initial characteristic size of 
tracer from below: 

2 (N+  2 ) ( N -  1 ) Dzr o >> xn(n - 1 ) (59) 

Here, r o is the characteristic size of initial tracer concentration q0(r) 
[cf. (25)]. The other condition limits the time range by 

1 D2r~ 
D2t ' ~ 2 ( N + 2 ) ( N -  1) In xn---- 5 (60) 

Notice that the time domain (60) decreases with the growth of the power n. 
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Note that, the case of linear initial tracer concentration 

qo(r) = Gr, po(r) = G = (Gl, G2) 

permits more complete analysis. (32) 
This problem has recently attracted considerable attention from both 

the theoretical and experimental side. (33-39~ These papers used numerical 
modeling and phenomenological models to analyze the behavior of the 
stationary (t ~ 00) probability density of the tracer gradient. They observed, 
among others, the appearance of distributions with "slowly decaying tails" 
of exponential type. 

Representing concentration q(r, t) in the form 

q(r, t) = Gr + c~(r, t) 

we obtain for the fluctuating component 

0 F O) 0 2 
Ot + ~ ~l(r,t)=-GF(r,t)+X~r2?l(r,t), ~(r, 0 ) = 0  (61) 

Statistical spatial homogeneity of the field c~(r, t) makes analysis of Eq. (61) 
simpler than the original problem (1). 

In particular, the stationary value of the second moment of the con- 
centration gradient for the Gaussian, delta-correlated in time random field 
F(r, t) is 

(~2(r, t))  = ( [~(r, t)] 2) = D, G2/x (62) 

whereas its mean and the variance become 

(c)(r, t)) =0, (c)2(r, t)) =2DtGZf~drf(r) (63) 

with 

K 
f(t) = 1 --D----~ (p2(r' t)) 

At initial stages of time evolution the statistical characteristics of the 
gradient do not depend on the molecular diffusion r in view of the formula 
(33), and 

(p(r, t))  =G,  (l~(r, t)l 2) ---G2{e 2n2(N+2~N- 11'- 1} (64) 
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The solution (64) makes it possible to estimate the time T O when the quan- 
tity (~-'(r, t ))  attains its stationary value (~-'),  described by Eq. (62). 
Namely, 

I +K 
T O ~ In D~ (65) 

2D-2(N+2)(N-  1) x 

Hence, lff~ dtf( t )~ To and, by (63), we get the stationary variance of 
(~(r, t), 

lim ( 0 2 ( r ,  t ) )  ~ 1 DIGZlnDI+K (66 )  
, ~  ( N +  2 ) ( N -  1) D_, h- 

Taking into account that 

D, ~a~,to, D,/D2 ~/o 

with velocity variance a~,, and temporal and spatial correlation radii to and 
lo, it follows from (65)-(66) that the time To can not be too large, due to 
its logarithmic dependence on the parameter h-. Furthermore, 

9 

(~2) ~ G21o In aT't~ , h- ,~ a~,ro 
K 

5. D I F F U S I O N  A P P R O X I M A T I O N  

In the previous section, we provided a detailed statistical topography 
analysis of passive tracer transport in the case of the delta-correlated 
velocity fluctuations F. The condition of applicability of such an 
approximation is that the temporal correlation radius to of F is much 
smaller than any other temporal scale arising in the problem/=~ 

For problems considered in Section 4.1 and 4.2, in the absence of 
mean flow, the temporal scales connected with the statistics of the fluc- 
tuating velocity component include 

tolD,, 1o/01, l/D2 

Here, r 0 is the characteristic dimension of the initial tracer concentration 
qo(r), 10 is the spatial correlation radius of the velocity field, and D l, D 2 are 
diffusion coefficients introduced in (21)-(21'). Other temporal scales, 
related to the coefficient of molecular diffusion, are 

,~I~, /~IK 
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In the presence of the mean flow, new temporal scales appear. Thus, for the 
mean flow considered in Section 4.4, such an additional scale is the quan- 
tity l /e - - the  reciprocal shear gradient. 

In the diffusion approximation we assume that velocity fluctuations F 
do not affect the dynamics of q on scales of the order of to. Hence, the 
dynamics of the passive tracer at these temporal scales can be approxi- 
mately described by 

0 ., a "~ 6q(r, t) 32 ~q(r,t) 
~+v( r ,U~r r J6 -~ j ( r , [ t )  K Or2 OFj(r,, t, ) 

6q(r, t') 3(r--r')_O-~-q(r, t') 
~Fj(r', t') Orj 

O O) 0 2 
~ + v ( r , t ) . O r r  q(r,t)=K0r-~_q(r,t) 

q(r, t)l,=,, = q(r, t') 

These equations are deterministic and randomness enters here only 
through the initial condition. In this approximation, the field q(r, t) is 
Markovian at large time scales t >> to .1221 

Let us also remark that the diffusion approximation becomes exact for 
the linear equation with an additive noise. Here, the variational derivative 
coincides with the Green's function of the deterministic equation. 

Examples of applications of the diffusion approximation and specific 
estimates for the delta-correlated field F(r, t) are provided in ref. 22. It is 
used to analyze two-dimensional particle diffusion by a Gaussian incom- 
pressible velocity field with parallel mean flow. In ref. 32 a similar analysis 
is applied to fluctuations of a passive tracer with mean concentration 
gradient. 

Here, we shall consider the practically important problem of a diffusing 
passive tracer that undergoes a sedimentation in an isotropic random 
velocity fields. 5 

Dispersion of particles affected by gravity and buoyancy forces plays 
important role in climatological and ecological models. Examples include 
grained dust emitted by industrial plants or sites of ecological disasters 
such as forrest fires or volcanic eruptions. The velocity v of sedimentation 
or buoyancy is directed along the vertical direction and is determined by 
the balance of buoyant forces and the viscous friction forces. If the particle 

5 The results of this section were obtained in cooperation with O. H. Nalbandyan. 
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is also subjected to chaotic motions of the medium, then its diffusion coef- 
ficient could be significantly changed due to the presence of a constant 
velocity of sedimentation. Here the tracer concentration is described by the 
dynamical equation (1) with constant velocity v(r, t ) = v - c o n s t .  As we 
observed earlier, this equation coincides with the one for the function 
�9 , ( r )=6( r ( t ) - r ) - - the  probability density of the Lagrangian particle 
coordinates. 

Equation (1) averaged over the ensemble of F-realizations gives, upon 
application of the Furutsu-Novikov formula, Eq. (13) Taking the diffusion 
approximation for the variational derivative of (14), we obtain 

d 
dFflr', t') q(r, t) 

02 ~rj q(r, t,)] =-exp{ ( t - t ' ) [K-~r2-VOl} I6 ( r - r ' )  . 

In the same approximation we obtain that the function q(r, t') at different 
times t, t' is related by the evolutionary propagator 

02 v 0 q,r,,-exp{ ,, 
Consequently, 

{[ o: ol} 6Fj(r,,t,)q(r,t)=exp r K~r2-V ~ 

x [d(r_r , )o~jexp { _ r  I K 02 ~-Sr2-VOl}q(r, t)] (67) 

where r = t -  t'. Substituting (67) into (14) and performing the shift opera- 
tion [operator exp(rv O/Or)], we obtain a closed-form operator equation 
for the mean tracer concentration (or for the probability density of the 
Lagrangian particle coordinate) 

~ + V ~ r  (q(r , t ) )  

=K~-~F, (q ( r , t ) )+- .  dr' drBu(r-r ' ,r)  

(68) 
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Equation (68) can be solved explicitly by the Fourier transform. As a 
result, we get the mean q, 

1 
(q(r,t))-(2roNf dr' qo(r') f dq 

xexp iq(r-r '-vt)-xq2t-qiq/  dr(t-r) Do.(r,q,v ) (69) 

where N denotes the spatial dimension, 

Do(r, q, v) = I dk Eu(k, r) exp{ -Kr(k-" --2kq) - irkv} (70) 

and Eo(k, r) is the spatial spectral density of the velocity field given by 

B,7(r, t) = f dk Eo.(k, t) e ikr (70') 

Furthermore, the incompressibility of the flow implies 

/ k,kf~ 
E~(k, t )=  E(k, t)~3o.---~-_) 

It follows from (70) that for sufficiently large t(t ~ or) one has asymptotics 

l fdr'qo(r')fdq (q(r, t))  = (2n) N 

• (71) 

where 

Do(v)= fo~" dr Do.(r, O, v)= fo dr f dk E,j(k, r ) e  -'~k-'+'*k* (72) 

It is clear from the expression (79) that the tensor D0.(v) is anisotropic mv. 
Let us demonstrate the validity of the Galilean invariance principle in 

our solution. "The Galilean principle demands that the physical effects 
should be independent of a constantly moving reference frame connected to 
the particle. The diffusion tensor D0.(v) in (72) determined by the spectral 
energy density E,j(k, r) was calculated in the coordinate system in which 
the particle has an additional drift velocity v. If the random velocity field 
F(r, t) also moves with constant velocity v, then F(r, t) =F(r- -vt ,  t), F(r, t) 
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being the velocity field in the moving frame. In this case the velocity 
correlation tensor of the velocity field is 

Bo.(r-r', t - t ' ) =  ( Fi(r, t) Fj(r', t ' ) )  

= ( P , . ( r -  vt, t) P j ( r ' -  vt '))  

= Po.(r-r' - v( t - t ' ) ;  t -  t') 

Hence, by (70'), 

1 t" 
j dr Bo(r, r) e Eo(k, r) - (2n) N 

~ i k r 

_ 1 fdr~ij(r,r)e_ikCr+,~l 
(DO N 

= E,y(k, r) e-ikvr 

Here J~0.(k, r) is the velocity spectral density in the moving frame. Sub- 
stituting this expression into formula (72); we see that the diffusion tensor 
is indeed independent of v in accordance with the Galilean invariance. 

In this context, observe that Eq. (68) and formula (72) obtained in 
paper ref. 40 based on the Bourre approximation and the mean-field method 
(see, for example ref. 41 ). However, the paper arrived at the wrong conclu- 
sion, to the effect that the presence of a constant wind shift leads to the 
appearance of a distinguished direction and asymmetry of the diffusion. In 
reality, as we have just shown, the Galilean principle forbids any diffusion 
asymmetry. 

However, one can consider a different realistic scenario whereby the 
particle is subject to an additional drift whereas the random field F(r, t) is 
not. Such a situation arises when the diffusing particles are subjected to 
gravity and buoyancy forces. Notice that the mean coordinate moments 

( r ( t ) ) = Q f  drr(q(r , t ) )  

determine the time evolution of the "center of mass" of the particle cloud 
as well as its higher moments, such as the inertia tensor of the cloud 

(ri(t) rj(t)) =Q f dr rirj(q(r, t)) 

Moreover, the total mean mass Q = j d r ( q ( r ,  t)) is conserved. These 
quantities coincide with the corresponding moment functions of the particle 
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position. In particular, we obtain the following relations for ( r ( t ) )  and 
~.  = ([r i ( t )  = ( r i ( t ) )  ] [ ri(t) = ( rj(t) ) ] ): 

( r ( t ) )  = r(0) + vt, ~ a } . ( t ) = 2  xr / j+  drD;j(r ,  0, v) 

Consequently, for large times t, the quantity D;j(v) determines the turbulent 
diffusion coefficient, 

tur _ _  d D o. - , l i rn  ~ aTj(t ) = 2[xr  o. + D/j(v)] 

Furthermore, 

D/j(v) = A(v) rio + B(v) A/j(v) 

with coefficients 

The above representation has the following implication: if one of the 
coordinate axes is aligned along the v-vector, then the particle's diffusion is 
statistically independent of the transverse directions, and the diffusion coef- 
ficient in the v direction is determined by Dii =A(v).  Furthermore, the 
transverse diffusion coefficient is D• = A(v) + B(v). This property is directly 
related to the finitude of the time correlation radius of the random velocity 
field F(r, t) and is absent in the delta-correlated case. In the new coordinate 
system, the formula (71) assumes the form 

l f d r ' q o ( r ' ) f d q f d q •  (q(r,  t ) )  - (2n)Jv 

• exp{ iq(x - x '  - vt) + qq• - p') 

- q2t[K + Dil(v)] - q~_ t [x  + O• } 

o r  

(q(r,  t ))  = 
1 A+B)'/'- 

[ 4 n t ( x + A + B ) ]  N/z ++~4 J I dr'q~ 

_ ( x _ x ,  vt)2 (p_p,)2 
xexp 4t[x+Dil(v)]  at [x-+ff~-~(v) ] J (71') 
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To evaluate the diffusion coefficients we will use the model of spectral 
density 

E(k, r) = E(k) exp(-]~[ / r0)  

where ro is the time correlation radius of the random velocities. In this 
case, 

1 
Do(v)=~ f dk E(k ) A,j(k) k l + p2(kv)2/k2v2 

where the parameter is 

kvro 
p(k, v) - 

1 + Kk2ro 

Consequently, in the 3D case we arrive at the formulas for turbulent diffu- 
sion rates, 

Dll(v) _4zr [~ dk kE(k) fN(k, v) 
- - V a  0 

_4re f~ dk kE(k) f • v) D• v ~o 

with functions 

fll(k,v)=[arctanp+;(;arctanp-l)l 

f • v) = ~ [ arctan p -~  ( ;  arctan p-1)]  

I fp  is small (i.e., when vr0 ~/0,  where l o is the spatial correlation radius of 
the velocity field), the functions fll(P) and f• are close to 2p/3, which 
corresponds to isotropic diffusion, independent of the sedimentation velocity 
v. For  large values of p (i.e., when vr0 ,> lo) we have fll(P) = 2f•  ~ re/2. 
Such an anisotropic diffusion is explained by the fact that the tracer mixing 
by the turbulent flow decreases the time the tracer particles spend within 
the velocity correlation radius. Additionally, in the isotropic field of ran- 
dom velocities, the transverse correlation radius of the velocity field is only 
half of the longitudinal correlation radius, (]) which explains the above 
anisotropy of the diffusion coefficient. For  parameter values xr0 ~ l 0, the 
diffusion tensor D,.j(v) does not depend on parameter x. 
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We have demonstrated that anisotropic diffusion of the tracer under- 
going sedimentation is essentially connected with the finitude of the 
correlation radius. Furthermore, using the diffusion approximation and 
Eulerian description of tracer clouds with characteristic length scale ro, we 
found the following limits of its applicability: 

DII(v) Vo ~ro, D• ro ~ro 

The latter, however, are valid only for a sufficiently small time correlation 
radius. For small fluctuations of the velocity field this restriction is not 
essential. 

6. C O N C L U S I O N S  

We utilize a unified functional approach to study the statistics of 
passive tracer diffusion in Gaussian random incompressible velocity fields, 
and provide both the general setup of the problem and two approximate 
methods of analysis. 

The general problem is very complicated. It contains many param- 
eters: the mean flow, statistics of fluctuations, molecular diffusion rate, etc. 
Their combined effect could not be adequately expressed by the mean 
tracer concentration or its correlation function. Rather, one needs to study 
the statistics of the problem at the level of joint probability densities of the 
tracer concentration and of its spatial gradient. Even in the simplest case 
of zero mean flow with zero molecular diffusion, in the delta-correlated 
approximation, the time evolution of the tracer fluctuations is still rather 
complicated. The initially smooth tracer distribution becomes more and 
more spatially chaotic and disordered, its spatial gradients show strong 
blowup, and the level lines of concentration assume fractal-like features. In 
addition, this process moves ill the direction of decreasing spatial scales, so 
eventually one arrives at scales of molecular diffusion. At this stage one 
loses the closed-form statistical description of probability densities. So one 
has to work out various approximate schemes. The first efforts of this kind 
are found in refs. 42-45. The quantitative description of effects of mean 
flow (even in the simplest case of parallel shear flow) and specific models 
of velocity field fluctuations (for example, the correlation tensor of the fluc- 
tuating comp6nent) can be analyzed on the basis of numerical solutions of 
the corresponding Fokker-Planck equations and computer simulations. 

The functional approach presented in this paper is based essentially on 
the assumption of a finite time correlation radius of the velocity field. The 
conditions of applicability of different approximation schemes are expressed 
in terms of the correlation radius. Our results do not apply to fields with 



834 Klyatskin et  al.  

large or infinite correlation radius, such as a stationary (in time) random 
velocity field. The latter case has not been studied yet in any generality, 
although some partial problems of this type have been consideredJ 46"47~ 
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